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Organic–inorganic  hybrid  perovskite  solar  cell  (PSC)  is  a
third-generation  photovoltaic  technology[1, 2],  and  the  certi-
fied  power  conversion  efficiency  (PCE)  has  reached  25.5%
(https://www.nrel.gov/pv/cell-efficiency.html),  which  can  rival
solar  cells  based  on  crystalline-Si  and  other  inorganic  semi-
conductors.  The  intrinsic  instability  of  perovskite  materials
could  impede  PSC  commercialization[3].  To  date,  a  variety  of
strategies  such  as  composition  engineering,  additive  engi-
neering,  interface  engineering  and  encapsulation  technique
are  employed  to  improve  the  long-term  stability  of  PSCs[4−9].
In  particular,  fullerene  materials  with  high  electron  mobility,
high  electron  affinity,  small  reorganization  energy  and  ad-
justable  energy  level  have  been  widely  utilized  as  interfacial
layers or additives in PSCs for efficiency and stability improve-
ment[10]. Among them, fluorinated and crosslinkable fullerene
derivatives  can  improve  the  stability  of  PSCs  effectively.  The
fluorinated  fullerene  derivatives  could  improve  the  mois-
ture stability  because of  the hydrophobicity  of  fluorine atom.
The crosslinked fullerene derivatives can protect the electron-
transport  layers  (ETLs)  against  solvent  erosion  during  per-
ovskite  solution  deposition,  and  the  as-formed  organic  net-
works can improve mechanical stability of PSCs.

Humidity  can  deteriorate  the  performance  of  PSCs.  In-
situ encapsulation over perovskite film by using fluorine-substi-
tuted  fullerene  derivatives  acquired  excellent  device  stability
against  humidity  destruction.  In  2016,  Jen et  al. reported  a
fluoroalkyl-substituted fullerene derivative (DF-C60, Fig. 1) and
used it  as  an additive to  make inverted fullerene/CH3NH3PbI3

bulk-heterojunction  (BHJ)  PSCs[11].  DF-C60 passivated  the  de-
fects of perovskite surface and facilitated charge transfer,  yie-
lding  a  PCE  of  18.11%.  The  unencapsulated  device  demon-
strated  high  ambient  stability,  after  being  stored  under  60  ±
5%  relative  humidity  (RH)  for  one  month,  the  device  kept
>83%  of  its  initial  PCE.  DF-C60 was  further  incorporated  into
CH3NH3Pb0.5Sn0.5I3 to  make  graded  heterojunction  (GHJ)
PSCs[12].  The  GHJ  device  offered  an  improved  PCE  (15.61%)
with  reduced  photovoltage  deficit.  Additionally,  the  per-
fluoroalkyl  chains  in  DF-C60 can  effectively  retard  moisture
penetration  into  Pb–Sn  perovskites  and  also  suppress  Sn2+

oxidation.  In  2017,  novel  fluorinated  isoxazolino[60]fullerene

(IS-1  and  IS-2, Fig.  1)  and  pyrazolino[60]fullerene  derivatives
(PI-1  and  PI-2, Fig.  1)  were  synthesized  by  Martín et  al.,  and
they  were  used  to  construct  ETL-free  PSCs[13].  The  suitable
LUMO  energy  levels  contribute  to  the  increased  open-circuit
voltage  (Voc)  and  the  higher  PCE  of  CH3NH3PbI3:IS2  device,
while  fullerene  helped  to  improve  the  photostability  of  the
device.  Two  fluorinated  PC61BM  derivatives  (3F-PC61BM  and
5F-PC61BM, Fig.  1)  were  used  as  n-type  additives  to  make
CH3NH3PbI3 BHJ  PSCs[14].  The  incorporation  of  0.1  wt%  3F-
PC61BM  can  fill  pinholes  and  passivate  the  defects  to  form  a
flat and dense BHJ perovskite film, suppressing moisture per-
meation  under  ambient  condition.  As  a  result,  the  device
kept  ~80%  of  its  initial  PCE  after  550  h  storage  in  N2,  where-
as  the  control  device  decayed  to  80%  after  240  h  storage.
More recently, Yang et al. developed a double-site defect pas-
sivation strategy by using a perfluoroalkyl- and pyridine-func-
tionalized fullerene derivative (C60-PyF15, Fig. 1), which was ad-
ded  into  CH3NH3PbI3 layer  to  make  inverted  fullerene/per-
ovskite  BHJ  PSCs[15].  The  device  gave  a  PCE  of  20.10%,  and
there  was  coordination  between  pyridine  moiety  and  Pb2+

and  also  hydrogen  bonding  between  fluorine  atom  and
CH3NH3

+.  The  improved  hydrophobicity  and  suppressed  ion
migration  endowed  the  device  much  better  ambient  and
thermal  stabilities.  The  device  can  retain  85%  and  81%  of  its
initial  PCE  after  exposing  for  1400  and  660  h  under  ambient
condition (25 ± 5 °C, ~35% RH) and under heating at 85 °C in
N2 without encapsulation, respectively.

Several  fluoroalkyl-substituted  fullerene  derivatives  were
combined with other  fullerene materials  to make a  moisture-
resistant  mixed-fullerene  interfacial  layer  for  PSCs.  In  2016,
Jen et  al. combined  N-methyl-2-(2-perfluorooctylphenyl)-3,4-
fullero-pyrrolidine  (F-C60, Fig.  1)  with  bis-adduct  of  N-methyl-
2-(2,3,4-tris(2-(2-methoxyethoxy)ethoxy)phenyl)-3,4-
fulleropyrrolidium  iodide  (bis-C60)  to  form  a  robust  and  effi-
cient  cathode  interlayer  atop  of  PC61BM  in  CH3NH3PbCl3–xIx
PSCs[16].  Benefitting  from  the  hydrophobicity  of  F-C60,  the
device  demonstrated  a  remarkable  stability,  retaining  ~80%
of  its  original  PCE  after  exposing  to  an  ambient  condition
(20%  RH)  for  two  weeks  without  encapsulation,  whereas  the
control  device  with  bis-C60 cathode  interlayer  decayed  to
zero  under  the  same  condition.  Recently,  Deng et  al. repor-
ted  two  PC61BM  analogues,  [6,  6]-phenyl-C61-butyric  acid  1H,
1H-trifluoro-1-ethyl ester (3F-PC61BM) and [6, 6]-phenyl-C61-bu-
tyric  acid  1H,  1H-tridecafluoro-1-heptyl  ester  (C6F13-PC61BM,
Fig.  1)[17],  which were used to make hybrid ETLs with PC61BM
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in inverted CH3NH3PbI3- and (FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3-
based PSCs, delivering PCEs of 18.37% and 19% for 1 wt% 3F-
PC61BM-containing  device,  respectively.  The  upward-orien-
ted  fluorocarbon  chains  formed  a  thin  moisture-resistant
layer.  The  1  wt%  C6F13-PC61BM-containing  CH3NH3PbI3 PSCs
showed  a  much  better  ambient  stability,  keeping  over  80%
PCE after  33  days  storage under  40%–60% RH in  air.  In  2020,

Feng et  al. synthesized  2-(perfluorophenyl)-5-phenyl-C60-
fulleropyrrolidine  (FP-i)  and  2,5-bis-(perfluorophenyl)-C60-
fulleropyrrolidine  (FP-ii, Fig.  1),  which  were  introduced  as
ETLs  in  CH3NH3PbCl3–xIx PSCs[18].  The  hydrogen  bonds  be-
tween the organic cation of perovskite and F atom within FP-
i  and  FP-ii,  as  well  as  the  enhanced  hydrophobicity  led  to
good passivation and humidity stability, keeping 70%–85% of
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Fig. 1. Molecular structures of fluorinated and crosslinkable fullerene derivatives.
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its initial PCE after 70 h in ambient air.
Though fullerene-based ETLs demonstrate fascinating elec-

tron  transport/extraction  capability  and  excellent  electronic
contact  with  perovskite  films,  the  partial  erosion  of  fullerene
films  by  the  solvents  (e.g.  N,  N-dimethylformamide,  dimethyl
sulfoxide) used for processing perovskite film may yield defect-
ive  film  with  shunting  paths.  Multilayer  spin-coating  depos-
ition  sometimes  results  in  poor  device  performance.  Further-
more,  mechanical  stress  is  the primary reason for  mechanical
failure  of  PSCs[19].  Introducing  crosslinkable  fullerene  deriva-
tives is a sound solution to these issues.

In  2016,  Snaith et  al. developed  two  crosslinkable
fullerene  derivatives  called  sol-gel  C60 and  PCBCB  (Fig.  1)  to
form  robust  fullerene  films  during  CH3NH3PbI3–xClx prepara-
tion[20].  Sol-gel  C60 was  crosslinked via hydrolysis-condensa-
tion reaction, and crosslinked PCBCB ETL was achieved by an-
nealing  at  200  °C via ring-opening  reaction  of  benzocyclob-
utene  moiety.  Both  solvent-resistant  fullerene  ETLs  resulted
in reduced shunting paths and improved hole-blocking proper-
ties. Another novel thermally crosslinkable styrene-functional-
ized  fullerene  derivative  MPMIC60 (Fig.  1)  was  synthesized  by
Dauskardt et al. to replace fragile PC61BM and C60 ETL in both
n–i–p  and  p–i–n  CH3NH3PbI3 PSCs[19].  A  solvent-resistant  film
formed  by  MPMIC60 exhibited  10-fold  and  14-fold  enhance-
ment in fracture resistance over PC61BM and C60,  respectively.
The  device  gave  higher Voc and  short-circuit  current  density
(Jsc) than PC61BM device. Later on, Hsu et al. introduced a cross-
linkable  [6,6]-phenyl-C61-butyric  styryl  dendron  ester  (C-
PCBSD, Fig.  1)  into  CH3NH3PbIxCl3–x via anti-solvent  method
to  enhance  the  crystallization  of  perovskite  films  and  passiv-
ate  the  defects,  as  well  as  improving  electron  extraction[21].
Crosslinked  network  of  C-PCBSD  could  prevent  the  fullerene
layer being washed away by subsequent solution processing,
and  protect  the  active  layer  against  moisture.  The  devices
can maintain 84.6% of its initial PCE after 180 h storage in am-
bient (40 ± 5% RH).  In 2017, Petrozza et al. used in-situ cross-
linked  C-PCBSD  in  n–i–p  CH3NH3PbI3 PSCs[22],  and  C-PCBSD
can form a robust and solvent-resistant thin film atop of  TiO2

to  improve  the  quality  of  upper  perovskite  films,  promoting
charge  extraction.  The  device  exhibited  an  enhanced  PCE
close  to  19%  with  a Voc above  1.1  V.  In  2018,  Liao et  al.
further  developed  a  composite  ETL  combining  C-PCBSD
with  π-conjugated  graphdiyne  (GD),  which  was  sandwiched
between  TiO2 and  perovskite  films  in  n–i–p  CH3NH3PbI3

PSCs[23].  The  GD  introduced  into  C-PCBSD  formed  a  face-on
stacked  film  through  a  strong  π–π  stacking  interaction.  Be-
sides, the thermally annealed C-PCBSD:GD film provided a ro-
bust  and  adhesive  network  with  excellent  solvent  resistance
to  overcome  interfacial  erosion,  which  contributed  to  effi-
cient  charge  extraction  of  ETL,  improved  crystallinity  of  per-
ovskite films, leading to a PCE of 20.19% and improved stabil-
ity (retaining 80% PCE after 500 h storage under ambient con-
dition with 25%–30% RH).  More recently,  Marder et  al. mixed
PCBCB  with  a  poly(methacrylate)  derivative  (CL)  to  form  an
ETL  for  p–i–n  Cs0.05(FA0.85MA0.15)0.95Pb(I0.9Br0.1)3 PSCs,  which
can  be  thermally  insolubilized[24].  The  device  with  PCBCB:CL
ETL  demonstrated  improved  PCE  (18.5%)  and  remarkable
thermal  stability,  keeping  92%  of  its  stabilized  power  output
after 3000 h storage in N2 at 85 °C.

Another crosslinked fullerene derivative [6, 6]-phenyl-C61-
butyric oxetane dendron ester (C-PCBOD, Fig. 1) via photo-cur-

ing  was  developed  to  modify  TiO2 surface  in  n–i–p  PSCs[25].
C-PCBOD was safe in the following deposition of  CH3NH3PbI3

precursor  solution.  It  could  passivate  the  trap-states  of  TiO2

and facilitate  the  charge transfer,  yielding PCEs  of  15.9% and
18.3%  for  devices  based  on  compact  TiO2 and  mesoporous
TiO2 ETL,  respectively.  To  overcome  the  brittleness  of  per-
ovskite  films,  which  limits  the  application  in  flexible  PSCs,  in
2019,  Liao et  al. introduced  C-PCBOD  as  a  plasticizer  into
CH3NH3PbI3 films to form an organic network to passivate the
grain  boundaries  as  well  as  the  trap  states  within  perovskite
layer[26].  The  rigid  and  flexible  devices  offered  PCEs  of  20.4%
and  18.1%,  respectively.  Under  a  stretching  of  Δ10.0  nm/μm,
the  C-PCBOD-containing  device  retained  62%  of  its  initial
PCE,  while  the  control  device  kept  42%.  The  robust  fullere-
ne  network  could  prevent  device  decomposition  in  air,  re-
taining 72% of the initial value after 960 h storage in air (25 ±
5%  RH).  PC61BM  crosslinked  by  1,6-diazidohexane  (DAZH,
Fig.  1) via a  UV  light  curing  was  reported[27].  The  crosslinked
PC61BM layer demonstrated improved solvent-resistance,  and
the  FA0.66MA0.34PbI2.85Br0.15 device  gave  a  PCE  of  18.4%  for
small-area and 14.9% for modules, respectively.

To check the details about above-mentioned fullerene de-
rivatives,  their  application,  device  performance  parameters,
and  stability,  you  may  find  Table  S1  in  the  Supporting  Infor-
mation.  By  applying  fluorinated  and  crosslinkable  fullerene
derivatives,  scientists  successfully  improved  the  efficiency
and stability of PSCs. More innovative fullerene materials con-
taining fluorine and crosslinkable moieties are desired. 
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